25 research outputs found

    Correlations Between Shoulder Rotational Motion, Strength Measures and Throwing Biomechanics in Collegiate Baseball Pitchers

    Get PDF
    Pitching involves high stresses to the arm that may alter soft tissue responsible for controlling biomechanics. It has been hypothesized that imbalances in strength and flexibility of the dominant shoulder lead to decreased performance and increased injury risk, but it is not fully known what specific pitching biomechanics are altered. There is a critical need to determine correlations between shoulder rotational strength, range of motion and pitching kinetics. Without such knowledge, identifying potential for injury from shoulder imbalances will likely remain difficult and invasive. The goal of this study was to determine correlations between shoulder rotational strength and range of motion and kinetics. Twelve collegiate pitchers participated in this IRB approved study. The clinical measures session tested shoulder rotational range of motion and strength and grip strength. The motion analysis session tested pitching biomechanics. Paired t-tests investigated differences in strength and range of motion between arms. Linear regression was performed to determine correlations between clinical measures, kinetics and pitch velocity. Regression learner neural networks were created to predict pitch velocity and elbow varus torque using clinical measures as inputs. The dominant arm had significantly higher external rotation and total range of motion than the nondominant arm. The nondominant arm normalized external rotation peak torque was significantly greater than the dominant arm at 0˚ external rotation. Correlations were found between elbow varus torque and isometric external/internal rotation ratio, and between shoulder posterior shear force and isokinetic eccentric external rotation/internal rotation ratios. Correlations to velocity included grip strength, concentric external rotation peak torque, isometric internal rotation peak torques, and isometric external rotation peak torques. The neural network accurately predicted velocity, with the standard deviation of the error equal to 2.29 (2.97%). These correlations associate two testing methods to identify injury risk. Increasing external/internal rotation ratios may decrease elbow varus torque and shoulder posterior shear force. Increasing external rotation, internal rotation, and grip strength may lead to velocity gains. Velocity can be predicted using clinical measures and a neural network

    Irish cardiac society - Proceedings of annual general meeting held 20th & 21st November 1992 in Dublin Castle

    Get PDF

    Patient and stakeholder engagement learnings: PREP-IT as a case study

    Get PDF

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Relationships Among Shoulder Rotational Strength, Range of Motion, Pitching Kinetics, and Pitch Velocity in Collegiate Baseball Pitchers

    No full text
    Cross, JA, Higgins, AW, Dziuk, CC, Harris, GF, and Raasch, WG. Relationships among shoulder rotational strength, range of motion, pitching kinetics, and pitch velocity in collegiate baseball pitchers. J Strength Cond Res XX(X): 000–000, 2022—Throwing shoulder injuries are the most common type of injury experienced by baseball pitchers. Weakness in the shoulder musculature and insufficient throwing arm range of motion are both risk factors for developing a shoulder injury. The goal of this study was to determine correlations among shoulder rotational strength, range of motion, pitching kinetics, and pitch velocity in collegiate pitchers. Thirteen uninjured male college pitchers were evaluated. Clinical measures included shoulder internal and external rotation range of motion, peak isokinetic internal and external rotator strength, and peak isometric internal and external rotator strength. Three-dimensional biomechanics were assessed as subjects threw from an indoor pitching mound to a strike zone net at regulation distance. Pearson\u27s correlations were used to assess the associations among the clinical measures and throwing metrics. Five significant correlations were found between peak shoulder compressive force and strength, and 4 significant correlations were found between pitching velocity and strength (p \u3c 0.05). No significant correlations were found between range of motion and pitching kinetics or velocity. Our results suggest that as shoulder rotational strength increases, the peak shoulder compressive force and pitch velocity both increase. Knowledge of relationships between strength metrics and pitching biomechanics may allow for improved strength training routines with the goal of increasing velocity without increasing injury risk
    corecore